Phase-0 Microdosing Literature: Published Studies, Regulations, News, and Reviews

The Phase-0 Microdosing Network and literature cut across multiple disciplines, stakeholders, and therapeutic areas. It is one of the few multi-professional congregations in an otherwise highly fragmented and super-specialized drug development space. Please check our 'Perspectives' piece in Nature Reviews Drug Discovery:

The following is a Phase-0 Microdosing literature list in reverse order by year of publication. The list includes research studies into methodologies and applicationsregulationsnews, and reviews. The list does not include Phase-0 including microdosing studies whose aim is exclusively to validate an assay. Also, the list does not include approaches who are meant to be used with therapeutic-level doses (such as microtracer studies). The list is likely an under-estimate of the Phase-0 Microdosing literature since not all studies that meet the definition of these approaches use the relevant terms in the publications, most importantly in the title, abstract, and keywords. In addition, the list is likely an underestimate of human studies using these approaches since at this stage of clinical development it is not required to report them in the public domain. Please contact us if you are aware of a publication that is not included.




  1. van Groen, B. D. et al. Dose-linearity of the pharmacokinetics of an intravenous [(14) C]midazolam microdose in childrenBr J Clin Pharmacol, doi:10.1111/bcp.14047 (2019).
  2. Mikus, G. Probes and Cocktails for Drug-Drug Interaction Evaluation: The Future Is Microdosing? Clin Pharmacol Ther, doi:10.1002/cpt.1350 (2019).
  3. Hohmann, N. et al. Simultaneous phenotyping of CYP2E1 and CYP3A using oral chlorzoxazone and midazolam microdoses. Br J Clin Pharmacol, doi:10.1111/bcp.14040 (2019).
  4. Thorneloe, K. S. et al. The biodistribution and clearance of AlbudAb, a novel biopharmaceutical medicine platform, assessed via PET imaging in humans. EJNMMI research 9, 45, doi:10.1186/s13550-019-0514-9 (2019).
  5. Al Idrus, A. Presage inks its 3rd deal around phase 0 studies—with more to come. FierceBiotech (2019).


  1. Xiao, H. et al. Developing a cassette microdosing approach to enhance the throughput of PET imaging agent screeningJ Pharm Biomed Anal 154, 48-56, doi:10.1016/j.jpba.2018.02.063 (2018).
  2. Sjogren, E., Halldin, M. M., Stalberg, O. & Sundgren-Andersson, A. K. Preclinical characterization of three transient receptor potential vanilloid receptor 1 antagonists for early use in human intradermal microdose analgesic studiesEuropean journal of pain (London, England), doi:10.1002/ejp.1175 (2018).
  3. Schwarz, S. W. & Clarke, B. N. Invited Perspective on JNM manuscript titled, "How Should FDA Review Diagnostic Radiopharmaceuticals?" by Carol Marcus. J Nucl Med, doi:10.2967/jnumed.117.204446 (2018).
  4. Sanai, N. et al. Phase 0 Trial of AZD1775 in First-Recurrence Glioblastoma Patients. Clin Cancer Res, doi:10.1158/1078-0432.ccr-17-3348 (2018).
  5. Law, M. et al. Cumulative effective dose and cancer risk for pediatric population in repetitive full spine follow-up imaging: How micro dose is the EOS microdose protocol? European journal of radiology 101, 87-91, doi:10.1016/j.ejrad.2018.02.015 (2018).
  6. Kratochwil, N. A. et al. Nanotracing and cavity-ring down spectroscopy: A new ultrasensitive approach in large molecule drug disposition studies. PLoS One 13, e0205435, doi:10.1371/journal.pone.0205435 (2018).
  7. Kramer, L. A. & Greek, R. Human Stakeholders and the Use of Animals in Drug Development. Business and Society Review 123, 3-58, doi:doi:10.1111/basr.12134 (2018).
  8. Keat, N. et al. A Microdose PET Study of the Safety, Immunogenicity, Biodistribution, and Radiation Dosimetry of (18)F-FB-A20FMDV2 for Imaging the Integrin alphavbeta6. Journal of nuclear medicine technology 46, 136-143, doi:10.2967/jnmt.117.203547 (2018).
  9. Chavez-Eng, C. M., Lutz, R. W., Goykhman, D. & Bateman, K. P. Microdosing Cocktail Assay Development for Drug-Drug Interaction Studies. J Pharm Sci 107, 1973-1986, doi:10.1016/j.xphs.2018.02.023 (2018).
  10. Burt, T. et al. Phase 0, including microdosing approaches: Applying the Three Rs and increasing the efficiency of human drug development. Altern Lab Anim 46, 335-346 (2018).
  11. Burt, T., Combes, R. D. . in The History of Alternative Test Methods in Toxicology (ed R.D. Combes M. Balls, A. Worth ) 229-240 (Elsevier/Academic Press, 2018).


  1. Zimmermann, M. et al. Microdose-Induced Drug-DNA Adducts as Biomarkers of Chemotherapy Resistance in Humans and Mice. Molecular cancer therapeutics 16, 376-387, doi:10.1158/1535-7163.mct-16-0381 (2017).
  2. Zhang, L. & Sparreboom, A. Predicting transporter-mediated drug interactions: Commentary on: "Pharmacokinetic evaluation of a drug transporter cocktail consisting of digoxin, furosemide, metformin and rosuvastatin" and "Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A". Clin Pharmacol Ther 101, 447-449, doi:10.1002/cpt.588 (2017).
  3. Wotherspoon, A. T., Safavi-Naeini, M. & Banati, R. B. Microdosing, isotopic labeling, radiotracers and metabolomics: relevance in drug discovery, development and safety. Bioanalysis 9, 1913-1933, doi:10.4155/bio-2017-0137 (2017).
  4. Wang, X. et al. Rolapitant Absolute Bioavailability and PET Imaging Studies in Healthy Adult Volunteers. Clin Pharmacol Ther 102, 332-339, doi:10.1002/cpt.637 (2017).
  5. Wang, S. S. et al. A diagnostic microdosing approach to investigate platinum sensitivity in non-small cell lung cancer. Int J Cancer 141, 604-613, doi:10.1002/ijc.30747 (2017).
  6. van Nuland, M. et al. Ultra-sensitive LC-MS/MS method for the quantification of gemcitabine and its metabolite 2',2'-difluorodeoxyuridine in human plasma for a microdose clinical trial. J Pharm Biomed Anal 151, 25-31, doi:10.1016/j.jpba.2017.12.048 (2017).
  7. Swain, N. A. et al. Discovery of Clinical Candidate 4-[2-(5-Amino-1H-pyrazol-4-yl)-4-chlorophenoxy]-5-chloro-2-fluoro-N-1,3-thiazol-4 -ylbenzenesulfonamide (PF-05089771): Design and Optimization of Diaryl Ether Aryl Sulfonamides as Selective Inhibitors of NaV1.7. Journal of medicinal chemistry, doi:10.1021/acs.jmedchem.7b00598 (2017).
  8. Samkoe, K. S. et al. Toxicity and Pharmacokinetic Profile for Single-Dose Injection of ABY-029: a Fluorescent Anti-EGFR Synthetic Affibody Molecule for Human Use. Mol Imaging Biol 19, 512-521, doi:10.1007/s11307-016-1033-y (2017).
  9. Rizk, M. L., Zou, L., Savic, R. M. & Dooley, K. E. Importance of Drug Pharmacokinetics at the Site of Action. Clinical and translational science, n/a-n/a, doi:10.1111/cts.12448 (2017).
  10. Rajagopalan, R. et al. Preclinical Characterization and Human Microdose Pharmacokinetics of ITMN-8187, a Nonmacrocyclic Inhibitor of the Hepatitis C Virus NS3 Protease. Antimicrob Agents Chemother 61, doi:10.1128/aac.01569-16 (2017).
  11. Prueksaritanont, T. et al. Validation of a microdose probe drug cocktail for clinical drug interaction assessments for drug transporters and CYP3A. Clin Pharmacol Ther 101, 519-530, doi:10.1002/cpt.525 (2017).
  12. Park, W.-S. et al. Human microdosing and mice xenograft data of AGM-130 applied to estimate efficacious doses in patients. Cancer Chemotherapy and Pharmacology 80, 363-369, doi:10.1007/s00280-017-3373-y (2017).
  13. Okour, M. et al. A Human Microdose Study of the Anti-Malarial GSK3191607 in Healthy Volunteers. Br J Clin Pharmacol, doi:10.1111/bcp.13476 (2017).
  14. Ng, S. Y. & Bettany-Saltikov, J. Imaging in the Diagnosis and Monitoring of Children with Idiopathic Scoliosis. The open orthopaedics journal 11, 1500-1520, doi:10.2174/1874325001711011500 (2017).
  15. Nandal, S. & Burt, T. Integrating Pharmacoproteomics into Early-Phase Clinical Development: State-of-the-Art, Challenges, and Recommendations. International journal of molecular sciences 18, doi:10.3390/ijms18020448 (2017).
  16. Mooij, M. G. et al. Successful Use of [14C]Paracetamol Microdosing to Elucidate Developmental Changes in Drug Metabolism. Clin Pharmacokinet, doi:10.1007/s40262-017-0508-6 (2017).
  17. Lamberts, L. E. et al. Tumor-Specific Uptake of Fluorescent Bevacizumab-IRDye800CW Microdosing in Patients with Primary Breast Cancer: A Phase I Feasibility Study. Clin Cancer Res 23, 2730-2741, doi:10.1158/1078-0432.ccr-16-0437 (2017).
  18. Kusuhara, H. et al. Comparison of pharmacokinetics of newly discovered aromatase inhibitors by a cassette microdosing approach in healthy Japanese subjects. Drug metabolism and pharmacokinetics 32, 293-300, doi:10.1016/j.dmpk.2017.09.003 (2017).
  19. Koch, M. et al. Threshold Analysis and Biodistribution of Fluorescently Labeled Bevacizumab in Human Breast Cancer. Cancer Res 77, 623-631, doi:10.1158/0008-5472.can-16-1773 (2017).
  20. Kim, A. et al. An accelerator mass spectrometry-enabled microtracer study to evaluate the first-pass effect on the absorption of YH4808. Clin Pharmacol Ther, doi:10.1002/cpt.672 (2017).
  21. Jensen, K. G. et al. Lack of Exposure in a First-in-Man Study Due to Aldehyde Oxidase Metabolism: Investigated by Use of 14C-microdose, Humanized Mice, Monkey Pharmacokinetics, and In Vitro Methods. Drug Metab Dispos 45, 68-75, doi:10.1124/dmd.116.072793 (2017).
  22. de Souza, A. L. et al. Fluorescent Affibody Molecule Administered In Vivo at a Microdose Level Labels EGFR Expressing Glioma Tumor Regions. Mol Imaging Biol 19, 41-48, doi:10.1007/s11307-016-0980-7 (2017).
  23. Chen, M. et al. An ultra-sensitive LC-MS/MS method to determine midazolam levels in human plasma: development, validation and application to a clinical study. Bioanalysis 9, 297-312, doi:10.4155/bio-2016-0191 (2017).
  24. Burt, T. et al. Intra-Target Microdosing (ITM): A Novel Drug Development Approach Aimed at Enabling Safer and Earlier Translation of Biological Insights Into Human Testing. Clinical and translational science, 1-14, doi:10.1111/cts.12464 (2017).
  25. Burt, T. et al. Intra-Target Microdosing - A Novel Drug Development Approach: Proof of Concept, Safety, and Feasibility Study in Humans. Clinical and translational science, doi:10.1111/cts.12477 (2017).
  26. Burt, T., Button, K. S., Thom, H., Noveck, R. J. & Munafo, M. R. The Burden of the "False-Negatives" in Clinical Development: Analyses of Current and Alternative Scenarios and Corrective Measures. Clinical and translational science 10, 470-479, doi:10.1111/cts.12478 (2017).
  27. Bergstrom, M. The Use of Microdosing in the Development of Small Organic and Protein Therapeutics. J Nucl Med 58, 1188-1195, doi:10.2967/jnumed.116.188037 (2017).
  28. Davidson, S. M. et al. Direct evidence for cancer-cell-autonomous extracellular protein catabolism in pancreatic tumors. Nat Med 23, 235-241, doi:10.1038/nm.4256 (2017).


  1. Togashi, K. et al. Systematic approach to optimize a pretreatment method for ultrasensitive liquid chromatography with tandem mass spectrometry analysis of multiple target compounds in biological samples. Journal of separation science 39, 3212-3220, doi:10.1002/jssc.201600282 (2016).
  2. Swart, P., Lozac'h, F., Simon, M., van Duijn, E. & Vaes, W. H. The impact of early human data on clinical development: there is time to win. Drug Discov Today 21, 873-879, doi:10.1016/j.drudis.2016.03.012 (2016).
  3. Svendsen, P. et al. The application of human phase 0 microdosing trials: A systematic review and perspectives. Leuk Lymphoma 57, 1281-1290, doi:10.3109/10428194.2015.1101097 (2016).
  4. Seymour, M. A. Adding value through accelerator mass spectrometry-enabled first in human studies. Journal of labelled compounds & radiopharmaceuticals 59, 640-647, doi:10.1002/jlcr.3420 (2016).
  5. Rowland, M. Microdosing of protein drugs. Clin Pharmacol Ther 99, 150-152, doi:10.1002/cpt.275 (2016).
  6. Roffel, A. F., van Marle, S. P., van Lier, J. J., Hartstra, J. & van Hoogdalem, E. J. An evaluation of human ADME and mass balance studies using regular or low doses of radiocarbon. Journal of labelled compounds & radiopharmaceuticals 59, 619-626, doi:10.1002/jlcr.3473 (2016).
  7. Madeen, E. P. et al. Human Microdosing with Carcinogenic Polycyclic Aromatic Hydrocarbons: In Vivo Pharmacokinetics of Dibenzo[def,p]chrysene and Metabolites by UPLC Accelerator Mass Spectrometry. Chem Res Toxicol 29, 1641-1650, doi:10.1021/acs.chemrestox.6b00169 (2016).
  8. Jones, H. M. et al. Clinical Micro-Dose Studies to Explore the Human Pharmacokinetics of Four Selective Inhibitors of Human Nav1.7 Voltage-Dependent Sodium Channels. Clin Pharmacokinet 55, 875-887, doi:10.1007/s40262-015-0365-0 (2016).
  9. de Vries, R. et al. Stable isotope-labelled intravenous microdose for absolute bioavailability and effect of grapefruit juice on ibrutinib in healthy adults. Br J Clin Pharmacol 81, 235-245, doi:10.1111/bcp.12787 (2016).
  10. Burt, T. et al. Microdosing and other Phase-0 Clinical Trials: Facilitating Translation in Drug Development. Clinical and translational science 9, 74-88, doi:10.1111/cts.12390 (2016).
  11. Burt, T. et al. Intra-Target Microdosing (ITM), A Novel Drug Development Approach: Proof-of-Concept in Humans. 2016 Annual Meeting of the American College of Clinical Pharmacology, September 25–27, 2016, Bethesda, MD. Clinical Pharmacology in Drug Development 5, 3-56, doi:10.1002/cpdd.292 (2016).
  12. Burt, T., John, C. S., Ruckle, J. L. & Vuong, L. T. Phase-0/microdosing studies using PET, AMS, and LC-MS/MS: a range of study methodologies and conduct considerations. Accelerating development of novel pharmaceuticals through safe testing in humans - a practical guide. Expert opinion on drug delivery, 1-16, doi:10.1080/17425247.2016.1227786 (2016).
  13. Bosgra, S., Vlaming, M. L. & Vaes, W. H. To Apply Microdosing or Not? Recommendations to Single Out Compounds with Non-Linear Pharmacokinetics. Clin Pharmacokinet 55, 1-15, doi:10.1007/s40262-015-0308-9 (2016).
  14. Bal, C. et al. Pharmacokinetic, Dosimetry and Toxicity Study of (1)(7)(7)Lu-EDTMP in Patients: Phase 0/I study. Current radiopharmaceuticals 9, 71-84 (2016).
  15. Jonas, O. et al. Parallel In Vivo Assessment of Drug Phenotypes at Various Time Points during Systemic BRAF Inhibition Reveals Tumor Adaptation and Altered Treatment Vulnerabilities. Clin Cancer Res 22, 6031-6038, doi:10.1158/1078-0432.Ccr-15-2722 (2016).


  1. Yamashita, S. et al. An Assessment of the Oral Bioavailability of Three Ca-Channel Blockers Using a Cassette-Microdose Study: A New Strategy for Streamlining Oral Drug Development. J Pharm Sci 104, 3154-3161, doi:10.1002/jps.24499 (2015).
  2. Woolsey, S. J. et al. Relationships between Endogenous Plasma Biomarkers of Constitutive CYP3A Activity with Single Time-Point Oral Midazolam Microdose Phenotype in Healthy Subjects. Basic & clinical pharmacology & toxicology, doi:10.1111/bcpt.12492 (2015).
  3. Vuong, L. T. et al. Opportunities in low-level radiocarbon microtracing: applications and new technology. Future Science OA 2, 1-22, doi:10.4155/fso.15.74 (2015).
  4. Vlaming, M. et al. Microdosing of a Carbon-14 Labeled Protein in Healthy Volunteers Accurately Predicts Its Pharmacokinetics at Therapeutic Dosages. Clin Pharmacol Ther 98, 196-204, doi:10.1002/cpt.131 (2015).
  5. Van Dongen, G. A. et al. 89Zr-immuno-PET for imaging of long circulating drugs and disease targets: why, how and when to be applied? The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the So 59, 18-38 (2015).
  6. Uhl, P., Fricker, G., Haberkorn, U. & Mier, W. Radionuclides in drug development. Drug Discov Today 20, 198-208, doi:10.1016/j.drudis.2014.09.027 (2015).
  7. Turner, M. A. et al. Pediatric microdose and microtracer studies using (14) C in Europe. Clin Pharmacol Ther 98, 234-237, doi:10.1002/cpt.163 (2015).
  8. Shingaki, T. et al. Quantitative Evaluation of mMate1 Function Based on Minimally Invasive Measurement of Tissue Concentration Using PET with [C]Metformin in Mouse. Pharm Res, doi:10.1007/s11095-015-1642-1 (2015).
  9. Schwarz, S. W. & Oyama, R. The role of exploratory investigational new drugs for translating radiopharmaceuticals into first-in-human studies. J Nucl Med 56, 497-500, doi:10.2967/jnumed.114.146472 (2015).
  10. Schou, M. et al. Large Variation in Brain Exposure of Reference CNS Drugs: a PET Study in Nonhuman Primates. Int J Neuropsychopharmacol 18, pyv036, doi:10.1093/ijnp/pyv036 (2015).
  11. Schou, M. et al. Large Variation in Brain Exposure of Reference CNS Drugs: a PET Study in Nonhuman Primates. Int J Neuropsychopharmacol 18, doi:10.1093/ijnp/pyv036 (2015).
  12. Saleem, A. et al. Lapatinib access into normal brain and brain metastases in patients with Her-2 overexpressing breast cancer. EJNMMI research 5, 30, doi:10.1186/s13550-015-0103-5 (2015).
  13. Roth-Cline, M. & Nelson, R. M. Microdosing Studies in Children: A US Regulatory Perspective. Clin Pharmacol Ther 98, 232-233, doi:10.1002/cpt.165 (2015).
  14. Park, M. H. et al. Validation of a liquid chromatography-triple quadrupole mass spectrometric method for the determination of 5-nitro-5'-hydroxy-indirubin-3'-oxime (AGM-130) in human plasma and its application to microdose clinical trial. Biomed Chromatogr, doi:10.1002/bmc.3551 (2015).
  15. Lappin, G. The expanding utility of microdosing. Clin Pharmacol Drug Dev 4, 401-406, doi:10.1002/cpdd.235 (2015).
  16. Johnstrom, P. et al. Development of rapid multistep carbon-11 radiosynthesis of the myeloperoxidase inhibitor AZD3241 to assess brain exposure by PET microdosing. Nuclear medicine and biology 42, 555-560, doi:10.1016/j.nucmedbio.2015.02.001 (2015).
  17. Hohmann, N. et al. Midazolam microdose to determine systemic and pre-systemic metabolic CYP3A activity in humans. Br J Clin Pharmacol 79, 278-285, doi:10.1111/bcp.12502 (2015).
  18. Hohmann, N., Haefeli, W. E. & Mikus, G. Use of Microdose Phenotyping to Individualise Dosing of Patients. Clin Pharmacokinet 54, 893-900, doi:10.1007/s40262-015-0278-y (2015).
  19. Hillyar, C. R., Knight, J. C., Vallis, K. A. & Cornelissen, B. PET and SPECT Imaging for the Acceleration of Anti-Cancer Drug Development. Current drug targets 16, 582-591 (2015).
  20. Garner, C. R. et al. Observational infant exploratory [(14)C]-paracetamol pharmacokinetic microdose/therapeutic dose study with accelerator mass spectrometry bioanalysis. Br J Clin Pharmacol 80, 157-167, doi:10.1111/bcp.12597 (2015).
  21. Fujita, K. et al. A clinical pharmacokinetic microdosing study of docetaxel with Japanese patients with cancer. Cancer Chemother Pharmacol 76, 793-801, doi:10.1007/s00280-015-2844-2 (2015).
  22. Devineni, D. et al. Absolute oral bioavailability and pharmacokinetics of canagliflozin: A microdose study in healthy participants. Clin Pharmacol Drug Dev 4, 295-304, doi:10.1002/cpdd.162 (2015).
  23. DeMarco, V. P. et al. Determination of [11C]Rifampin Pharmacokinetics within Mycobacterium tuberculosis-Infected Mice by Using Dynamic Positron Emission Tomography Bioimaging. Antimicrob Agents Chemother 59, 5768-5774, doi:10.1128/aac.01146-15 (2015).
  24. Burt, T. et al. Intraarterial Microdosing: A Novel Drug Development Approach, Proof-of-Concept PET Study in Rats. J Nucl Med 56, 1793-1799, doi:10.2967/jnumed.115.160986 (2015).
  25. Annes, W. F. et al. Relative contributions of presystemic and systemic peptidases to oral exposure of a novel metabotropic glutamate 2/3 receptor agonist (LY404039) after oral administration of prodrug pomaglumetad methionil (LY2140023). J Pharm Sci 104, 207-214, doi:10.1002/jps.24226 (2015).
  26. Jonas, O. et al. An implantable microdevice to perform high-throughput in vivo drug sensitivity testing in tumors. Science translational medicine 7, 284ra257, doi:10.1126/scitranslmed.3010564 (2015).


  1. Xu, X. S. et al. Sensitivity-based analytical approaches to support human absolute bioavailability studies. Bioanalysis 6, 497-504, doi:10.4155/bio.13.318 (2014).
  2. Wurz, G. T. & Degregorio, M. W. Response to: "Deceptive argumentation against diagnostic microdosing of anti-cancer drugs" by Dirk Theile and Gerd Mikus (Letter dated February 13, 2014). Int J Cancer, doi:10.1002/ijc.28805 (2014).
  3. Wurz, G. T. & Degregorio, M. W. Activating adaptive cellular mechanisms of resistance following sublethal cytotoxic chemotherapy: Implications for diagnostic microdosing. Int J Cancer, doi:10.1002/ijc.28773 (2014).
  4. van der Veldt, A. A. & Lammertsma, A. A. In vivo imaging as a pharmacodynamic marker. Clin Cancer Res 20, 2569-2577, doi:10.1158/1078-0432.ccr-13-2666 (2014).
  5. Theile, D. & Mikus, G. Deceptive argumentation against diagnostic microdosing of anti-cancer drugs. Int J Cancer, doi:10.1002/ijc.28806 (2014).
  6. Mooij, M. G. et al. Pediatric microdose study of [(14)C]paracetamol to study drug metabolism using accelerated mass spectrometry: proof of concept. Clin Pharmacokinet 53, 1045-1051, doi:10.1007/s40262-014-0176-8 (2014).
  7. Malfatti, M. A., Lao, V., Ramos, C. L., Ong, V. S. & Turteltaub, K. W. Use of microdosing and accelerator mass spectrometry to evaluate the pharmacokinetic linearity of a novel tricyclic GyrB/ParE inhibitor in rats. Antimicrob Agents Chemother 58, 6477-6483, doi:10.1128/aac.03300-14 (2014).
  8. Madeen, E. et al. Human in Vivo Pharmacokinetics of [C]Dibenzo[def,p]chrysene by Accelerator Mass Spectrometry Following Oral Microdosing. Chem Res Toxicol, doi:10.1021/tx5003996 (2014).
  9. Hohmann, N., Halama, B., Siller, N., Mikus, G. & Haefeli, W. E. Response to "can CYP3A activity be evaluated for drug interaction using a nanogram dose of probe drug?": evaluation of CYP3A activity with microdoses of midazolam. Clin Pharmacol Ther 95, 490-491, doi:10.1038/clpt.2014.28 (2014).
  10. Gordi, T. et al. Pharmacokinetic analysis of 14C-ursodiol in newborn infants using accelerator mass spectrometry. J Clin Pharmacol 54, 1031-1037, doi:10.1002/jcph.327 (2014).
  11. Carls, A. et al. Systemic exposure of topical erythromycin in comparison to oral administration and the effect on cytochrome P450 3A4 activity. Br J Clin Pharmacol 78, 1433-1440, doi:10.1111/bcp.12497 (2014).


  1. Yamane, N. et al. Cost-effectiveness analysis of microdose clinical trials in drug development. Drug metabolism and pharmacokinetics 28, 187-195 (2013).
  2. van der Veldt, A. A., Smit, E. F. & Lammertsma, A. A. Positron Emission Tomography as a Method for Measuring Drug Delivery to Tumors in vivo: The Example of [(11)C]docetaxel. Frontiers in oncology 3, 208, doi:10.3389/fonc.2013.00208 (2013).
  3. van der Veldt, A. A. et al. Toward prediction of efficacy of chemotherapy: a proof of concept study in lung cancer patients using [(1)(1)C]docetaxel and positron emission tomography. Clin Cancer Res 19, 4163-4173, doi:10.1158/1078-0432.ccr-12-3779 (2013).
  4. Schou, M. et al. Radiolabeling of the cannabinoid receptor agonist AZD1940 with carbon-11 and PET microdosing in non-human primate. Nuclear medicine and biology 40, 410-414, doi:10.1016/j.nucmedbio.2012.10.011 (2013).
  5. Mochida, I. et al. Whole body pharmacokinetics of C-11 donepezil hydrochloride in humans: A positron emission tomography study. J NUCL MED MEETING ABSTRACTS 54, 1188- (2013).
  6. Liu, A. & Aubry, A. F. Conference Report: Energized bioanalytical solutions at the 2012 Eastern Analytical Symposium & Exposition. Bioanalysis 5, 2341-2344, doi:10.4155/bio.13.228 (2013).
  7. Lesche, R. et al. Preclinical evaluation of BAY 1075553, a novel F-labelled inhibitor of prostate-specific membrane antigen for PET imaging of prostate cancer. European journal of nuclear medicine and molecular imaging, doi:10.1007/s00259-013-2527-3 (2013).
  8. Lappin, G., Noveck, R. & Burt, T. Microdosing and drug development: past, present and future. Expert Opin Drug Metab Toxicol 9, 817-834, doi:10.1517/17425255.2013.786042 (2013).
  9. Lappin, G. et al. A microdose study of (1)(4)C-AR-709 in healthy men: pharmacokinetics, absolute bioavailability and concentrations in key compartments of the lung. Eur J Clin Pharmacol 69, 1673-1682, doi:10.1007/s00228-013-1528-2 (2013).
  10. Lamers, R. J., de Jong, A. F., Lopez-Gutierrez, J. M. & Gomez-Guzman, J. Iodine-129 microdosing for protein and peptide drug development: erythropoietin as a case study. Bioanalysis 5, 53-63, doi:10.4155/bio.12.297 (2013).
  11. Kummar, S. et al. First-in-human phase 0 trial of oral 5-iodo-2-pyrimidinone-2'-deoxyribose in patients with advanced malignancies. Clin Cancer Res 19, 1852-1857, doi:10.1158/1078-0432.ccr-12-3118 (2013).
  12. Kim, B. I. et al. First in human imaging of amyloid deposition in Alzheimer disease using the [18F]FC119S. J NUCL MED MEETING ABSTRACTS 54, 1803- (2013).
  13. Kaplan, N., Garner, C. & Hafkin, B. AFN-1252 in vitro absorption studies and pharmacokinetics following microdosing in healthy subjects. Eur J Pharm Sci 50, 440-446, doi:10.1016/j.ejps.2013.08.019 (2013).
  14. IOM. Improving the Utility and Translation of Animal Models for Nervous System Disorders: Workshop Summary. (The National Academies Press, 2013).
  15. IOM. Improving and Accelerating Therapeutic Development for Nervous System Disorders: Workshop Summary. (The National Academies Press, 2013).
  16. Ikeda, T. et al. Microdose pharmacogenetic study of (1)(4)C-tolbutamide in healthy subjects with accelerator mass spectrometry to examine the effects of CYP2C9 *3 on its pharmacokinetics and metabolism. Eur J Pharm Sci 49, 642-648, doi:10.1016/j.ejps.2013.05.016 (2013).
  17. Ieiri, I. et al. Mechanisms of pharmacokinetic enhancement between ritonavir and saquinavir; micro/small dosing tests using midazolam (CYP3A4), fexofenadine (p-glycoprotein), and pravastatin (OATP1B1) as probe drugs. J Clin Pharmacol 53, 654-661, doi:10.1002/jcph.62 (2013).
  18. Heuveling, D. A. et al. Phase 0 microdosing PET study using the human mini antibody F16SIP in head and neck cancer patients. J Nucl Med 54, 397-401, doi:10.2967/jnumed.112.111310 (2013).
  19. Hensel, F., Eckstein, M., Rosenwald, A. & Brandlein, S. Early development of PAT-SM6 for the treatment of melanoma. Melanoma research 23, 264-275, doi:10.1097/CMR.0b013e328362cbc8 (2013).
  20. Halama, B. et al. A nanogram dose of the CYP3A probe substrate midazolam to evaluate drug interactions. Clin Pharmacol Ther 93, 564-571, doi:10.1038/clpt.2013.27 (2013).
  21. Fuloria, N. K., Fuloria, S. & Vakiloddin, S. Phase zero trials: a novel approach in drug development process. Renal failure 35, 1044-1053, doi:10.3109/0886022x.2013.810543 (2013).
  22. Dunphy, M. et al. Progress in first-in-human trial of Hsp90-targeted PET imaging in cancer patients. J NUCL MED MEETING ABSTRACTS 54, 279- (2013).
  23. Cho, D. Y., Bae, S. H., Shon, J. H. & Bae, S. K. High-sensitive LC-MS/MS method for the simultaneous determination of mirodenafil and its major metabolite, SK-3541, in human plasma: application to microdose clinical trials of mirodenafil. Journal of separation science 36, 840-848, doi:10.1002/jssc.201200919 (2013).
  24. Burt, T. & Dhillon, S. Pharmacogenomics in early-phase clinical development. Pharmacogenomics 14, 1085-1097, doi:10.2217/pgs.13.81 (2013).


  1. Xu, X. S. et al. Overcoming bioanalytical challenges in an Onglyza((R)) intravenous [(14)C]microdose absolute bioavailability study with accelerator MS. Bioanalysis 4, 1855-1870, doi:10.4155/bio.12.171 (2012).
  2. Vuong, L. T., Blood, A. B., Vogel, J. S., Anderson, M. E. & Goldstein, B. Applications of accelerator MS in pediatric drug evaluation. Bioanalysis 4, 1871-1882, doi:10.4155/bio.12.173 (2012).
  3. Sun, L. et al. Ultrasensitive liquid chromatography-tandem mass spectrometric methodologies for quantification of five HIV-1 integrase inhibitors in plasma for a microdose clinical trial. Anal Chem 84, 8614-8621, doi:10.1021/ac301581h (2012).
  4. Rowland, M. Microdosing: A critical assessment of human data. J Pharm Sci 101, 4067-4074, doi:10.1002/jps.23290 (2012).
  5. Ostenfeld, T., Beaumont, C., Bullman, J., Beaumont, M. & Jeffrey, P. Human microdose evaluation of the novel EP1 receptor antagonist GSK269984A. Br J Clin Pharmacol 74, 1033-1044, doi:10.1111/j.1365-2125.2012.04296.x (2012).
  6. Matthews, P. M., Rabiner, E. A., Passchier, J. & Gunn, R. N. Positron emission tomography molecular imaging for drug development. Br J Clin Pharmacol 73, 175-186, doi:10.1111/j.1365-2125.2011.04085.x (2012).
  7. Kusuhara, H. et al. Pharmacokinetic interaction study of sulfasalazine in healthy subjects and the impact of curcumin as an in vivo inhibitor of BCRP. British journal of pharmacology, doi:10.1111/j.1476-5381.2012.01887.x (2012).
  8. Khanna, I. Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov Today 17, 1088-1102, doi:10.1016/j.drudis.2012.05.007 (2012).
  9. Ieiri, I. et al. Pharmacogenomic/pharmacokinetic assessment of a four-probe cocktail for CYPs and OATPs following oral microdosing. International journal of clinical pharmacology and therapeutics 50, 689-700, doi:10.5414/cp201763 (2012).
  10. Harrison, A. et al. Case studies addressing human pharmacokinetic uncertainty using a combination of pharmacokinetic simulation and alternative first in human paradigms. Xenobiotica 42, 57-74, doi:10.3109/00498254.2011.622418 (2012).
  11. Gu, H. et al. Calculation and mitigation of isotopic interferences in liquid chromatography-mass spectrometry/mass spectrometry assays and its application in supporting microdose absolute bioavailability studies. Anal Chem 84, 4844-4850, doi:10.1021/ac300442v (2012).
  12. Graham, R. A. et al. Single and multiple dose intravenous and oral pharmacokinetics of the hedgehog pathway inhibitor vismodegib in healthy female subjects. Br J Clin Pharmacol 74, 788-796, doi:10.1111/j.1365-2125.2012.04281.x (2012).
  13. Croft, M., Keely, B., Morris, I., Tann, L. & Lappin, G. Predicting Drug Candidate Victims of Drug-Drug Interactions, using Microdosing. Clin Pharmacokinet 51, 237-246, doi:10.2165/11597070-000000000-00000 (2012).
  14. Chen, J. et al. Biphasic elimination of tenofovir diphosphate and nonlinear pharmacokinetics of zidovudine triphosphate in a microdosing study. J Acquir Immune Defic Syndr 61, 593-599, doi:10.1097/QAI.0b013e3182717c98 (2012).
  15. Burhenne, J. et al. Quantification of femtomolar concentrations of the CYP3A substrate midazolam and its main metabolite 1'-hydroxymidazolam in human plasma using ultra performance liquid chromatography coupled to tandem mass spectrometry. Anal Bioanal Chem 402, 2439-2450, doi:10.1007/s00216-011-5675-y (2012).
  16. Bauer, M. et al. Pgp-mediated interaction between (R)-[11C]verapamil and tariquidar at the human blood-brain barrier: a comparison with rat data. Clin Pharmacol Ther 91, 227-233, doi:10.1038/clpt.2011.217 (2012).
  17. Arnaud, C. H. & Washington, C. Diverging Roads for Microdosing. Chemical and Enginerring News Jan 21 (2012).


  1. Yamashita, S. Impact of NEDO project on microdosing clinical studies: toward the eIND study in Japan. Drug metabolism and pharmacokinetics 26, 549-550, doi:10.2133/dmppk/DMPK-11-PF-906 (2011).
  2. Yamane, N. et al. Clinical relevance of liquid chromatography tandem mass spectrometry as an analytical method in microdose clinical studies. Pharm Res 28, 1963-1972, doi:10.1007/s11095-011-0423-8 (2011).
  3. Wagner, C. C. & Langer, O. Approaches using molecular imaging technology -- use of PET in clinical microdose studies. Adv Drug Deliv Rev 63, 539-546, doi:10.1016/j.addr.2010.09.011 (2011).
  4. Sugiyama, Y. & Yamashita, S. Impact of microdosing clinical study -- why necessary and how useful? Adv Drug Deliv Rev 63, 494-502 (2011).
  5. Rowland, M., Peck, C. & Tucker, G. Physiologically-based pharmacokinetics in drug development and regulatory science. Annu Rev Pharmacol Toxicol 51, 45-73, doi:10.1146/annurev-pharmtox-010510-100540 (2011).
  6. Reid, J. M. et al. Phase 0 clinical chemoprevention trial of the Akt inhibitor SR13668. Cancer prevention research (Philadelphia, Pa.) 4, 347-353, doi:10.1158/1940-6207.capr-10-0313 (2011).
  7. Park, M. K. et al. Open label, three period, single sequence, study of 5, 25, 50 mg sertraline pharmacokinetics in healthy male Korean volunteers. International journal of clinical pharmacology and therapeutics 49, 672-678 (2011).
  8. Minamide, Y., Osawa, Y., Nishida, H., Igarashi, H. & Kudoh, S. A highly sensitive LC-MS/MS method capable of simultaneously quantitating celiprolol and atenolol in human plasma for a cassette cold-microdosing study. Journal of separation science 34, 1590-1598, doi:10.1002/jssc.201100089 (2011).
  9. Maeda, K. et al. Nonlinear pharmacokinetics of oral quinidine and verapamil in healthy subjects: a clinical microdosing study. Clin Pharmacol Ther 90, 263-270 (2011).
  10. Maeda, K. & Sugiyama, Y. Novel stratergies for microdose studies using non-radiolabeled compounds. Adv Drug Deliv Rev 63, 532-538 (2011).
  11. Maeda, K. et al. Identification of the rate-determining process in the hepatic clearance of atorvastatin in a clinical cassette microdosing study. Clin Pharmacol Ther 90, 575-581 (2011).
  12. Lappin, G. et al. Comparative pharmacokinetics between a microdose and therapeutic dose for clarithromycin, sumatriptan, propafenone, paracetamol (acetaminophen), and phenobarbital in human volunteers. Eur J Pharm Sci 43, 141-150 (2011).
  13. Kusuhara, H. et al. Effects of a MATE protein inhibitor, pyrimethamine, on the renal elimination of metformin at oral microdose and at therapeutic dose in healthy subjects. Clin Pharmacol Ther 89, 837-844, doi:10.1038/clpt.2011.36 (2011).
  14. Kurihara, C. Ethical, legal, and social implications (ELSI) of microdose clinical trials. Adv Drug Deliv Rev 63, 503-510 (2011).
  15. Ieiri, I. et al. Pharmacokinetic and pharmacogenomic profiles of telmisartan after the oral microdose and therapeutic dose. Pharmacogenetics and genomics 21, 495-505, doi:10.1097/FPC.0b013e3283489ce2 (2011).
  16. Ieiri, I. et al. Microdosing Clinical Study: Pharmacokinetic, Pharmacogenomic (SLCO2B1), and Interaction (Grapefruit Juice) Profiles of Celiprolol Following the Oral Microdose and Therapeutic Dose. J Clin Pharmacol (2011).
  17. Henderson, P. T. et al. A microdosing approach for characterizing formation and repair of carboplatin-DNA monoadducts and chemoresistance. Int J Cancer 129, 1425-1434, doi:10.1002/ijc.25814 (2011).
  18. Gao, L. et al. Precision and Accuracy in the Quantitative Analysis of Biological Samples by Accelerator Mass Spectrometry: Application in Microdose Absolute Bioavailability Studies. Anal Chem, doi:10.1021/ac2006284 (2011).
  19. Barthel, H. et al. Individualized quantification of brain beta-amyloid burden: results of a proof of mechanism phase 0 florbetaben PET trial in patients with Alzheimer's disease and healthy controls. European journal of nuclear medicine and molecular imaging 38, 1702-1714, doi:10.1007/s00259-011-1821-1 (2011).


  1. Yamazaki, A. et al. Microdose study of a P-glycoprotein substrate, fexofenadine, using a non-radioisotope-labelled drug and LC/MS/MS. Journal of clinical pharmacy and therapeutics 35, 169-175, doi:10.1111/j.1365-2710.2009.01159.x (2010).
  2. Wang, J. L. et al. The novel benzopyran class of selective cyclooxygenase-2 inhibitors. Part III: the three microdose candidates. Bioorg Med Chem Lett 20, 7164-7168, doi:10.1016/j.bmcl.2010.07.059 (2010).
  3. Wagner, C. C. et al. A Combined Accelerator Mass Spectrometry-Positron Emission Tomography Human Microdose Study with 14C- and 11C-Labelled Verapamil. Clin Pharmacokinet 50, 111-120, doi:10.2165/11537250-000000000-00000 (2010).
  4. Tozuka, Z. et al. Microdose study of 14C-acetaminophen with accelerator mass spectrometry to examine pharmacokinetics of parent drug and metabolites in healthy subjects. Clin Pharmacol Ther 88, 824-830 (2010).
  5. Tewari, T. & Mukherjee, S. Microdosing: concept, application and relevance. Perspectives in clinical research 1, 61-63 (2010).
  6. Stenstrom, K., Sydoff, M. & Mattsson, S. Microdosing for early biokinetic studies in humans. Radiation protection dosimetry 139, 348-352, doi:10.1093/rpd/ncq029 (2010).
  7. Salehpour, M., Ekblom, J., Sabetsky, V., Hakansson, K. & Possnert, G. Accelerator mass spectrometry offers new opportunities for microdosing of peptide and protein pharmaceuticals. Rapid Commun Mass Spectrom 24, 1481-1489, doi:10.1002/rcm.4544 (2010).
  8. Rowland, M. Interview: Interview with Professor Malcolm Rowland. Bioanalysis 2, 385-391, doi:10.4155/bio.09.179 (2010).
  9. Ni, J. et al. Sensitivity and proportionality assessment of metabolites from microdose to high dose in rats using LC-MS/MS. Bioanalysis 2, 407-419, doi:10.4155/bio.10.10 (2010).
  10. Moschos, S. J. et al. Pharmacodynamic (phase 0) study using etaracizumab in advanced melanoma. J Immunother 33, 316-325, doi:10.1097/CJI.0b013e3181c1f216 (2010).
  11. Lappin, G. et al. Pharmacokinetics of fexofenadine: Evaluation of a microdose and assessment of absolute oral bioavailability. . Eur J Pharm Sci 40, 125–131 (2010).
  12. Lappin, G. Microdosing: current and the future. Bioanalysis 2, 509-517, doi:10.4155/bio.09.177 (2010).
  13. Lappin, G. in Pharmacokinetics in Drug Development (eds P. Bonate & D. R. Howard) Ch. 11, (Springer, 2010).
  14. Langley, G. & Farnaud, S. Opinion: Microdosing: safer clinical trials and fewer animal tests. Bioanalysis 2, 393-395, doi:10.4155/bio.09.168 (2010).
  15. Jekunen, A. P., Pauwels, E. K. & Kairemo, K. J. Microdosing in early lead discovery. Bioanalysis 2, 421-428, doi:10.4155/bio.09.189 (2010).
  16. Ings, R. M. Welcome to 'microdosing'. Bioanalysis 2, 371-372, doi:10.4155/bio.10.9 (2010).
  17. Henderson, P. T. & Pan, C. X. Human microdosing for the prediction of patient response. Bioanalysis 2, 373-376, doi:10.4155/bio.10.3 (2010).
  18. Garner, R. C. Practical experience of using human microdosing with AMS analysis to obtain early human drug metabolism and PK data. Bioanalysis 2, 429-440, doi:10.4155/bio.10.6 (2010).
  19. Gao, L. et al. in 11th Annual Land O’Lakes Bioanalytical Conference (2010).
  20. Dueker, S. R. et al. Early human ADME using microdoses and microtracers: bioanalytical considerations. Bioanalysis 2, 441-454, doi:10.4155/bio.10.8 (2010).
  21. Chen, J. et al. Accelerator mass spectrometry measurement of intracellular concentrations of active drug metabolites in human target cells in vivo. Clin Pharmacol Ther 88, 796-800, doi:clpt2010188 [pii]10.1038/clpt.2010.188 (2010).
  22. Arjomand, A. Accelerator mass spectrometry-enabled studies: current status and future prospects. Bioanalysis 2, 519-541 (2010).


  1. Zhou, X. J., Garner, R. C., Nicholson, S., Kissling, C. J. & Mayers, D. Microdose Pharmacokinetics of IDX899 and IDX989, Candidate HIV-1 Non-Nucleoside Reverse Transcriptase Inhibitors, Following Oral and Intravenous Administration in Healthy Male Subjects. J Clin Pharmacol 49, 1408-1416 (2009).
  2. Yip, D. et al. A phase 0 trial of riluzole in patients with resectable stage III and IV melanoma. Clin Cancer Res 15, 3896-3902, doi:10.1158/1078-0432.ccr-08-3303 (2009).
  3. Yamane, N. et al. Microdose clinical trial: quantitative determination of nicardipine and prediction of metabolites in human plasma. Drug metabolism and pharmacokinetics 24, 389-403 (2009).
  4. Wagner, C. C. et al. in 9th Congress of the European Association of Clinical Pharmacology and Therapeutics. Abstract in: Basic and Clinical Pharmacology & Toxicology 105 Supplement 1: 23_oral (Edinburgh, Scotland 2009).
  5. Sugiyama, Y. Effective use of microdosing and Positron Emission Tomography (PET) studies on new drug discovery and development. Drug metabolism and pharmacokinetics 24, 127-129 (2009).
  6. Stevens, L. et al. in ASCPT (National Harbor MD USA, 2009).
  7. Stevens, L. et al. in Poster presented at AAPS (Los Angeles, 2009).
  8. Srinivasan, S. Ethical concerns in clinical trials in India: An investigation. (2009).
  9. Seymour, M. The best model for humans is human -- how to accelerate early drug development safely. Altern Lab Anim 37 Suppl 1, 61-65 (2009).
  10. Seth, S. D., Kumar, A. & Pradeep, D. Human microdosing; a boon or a bane? Indian J Med Res 130, 202-204 (2009).
  11. Phillips, L. R., Hill, K. D. & Majerova, E. Liquid Chromatographic Determination of NSC 737664 (ABT-888: an Inhibitor of Poly(ADP-ribose) Polymerase (PARP)) in Plasma and Urine in a Phase 0 Clinical Trial. Journal of liquid chromatography & related technologies 32, 261-272, doi:10.1080/10826070802603351 (2009).
  12. Miyaji, Y. et al. Use of an intravenous microdose of 14C-labeled drug and accelerator mass spectrometry to measure absolute oral bioavailability in dogs; cross-comparison of assay methods by accelerator mass spectrometry and liquid chromatography-tandem mass spectrometry. Drug metabolism and pharmacokinetics 24, 130-138 (2009).
  13. Mahajan, R., Parvez, A. & Gupta, K. Microdose vs Therapeutic dose for evaluation of pharmacokinetic data: A comparative study. J Young Pharmacists 28, 290-294 (2009).
  14. LoRusso, P. M. Phase 0 clinical trials: an answer to drug development stagnation? J Clin Oncol 27, 2586-2588, doi:10.1200/jco.2008.21.5798 (2009).
  15. Lewis, D. F. Early human studies of investigational agents: dose or microdose. Br J Clin Pharmacol 67, 277-279 (2009).
  16. Lappin, G., Wagner, C., Langer, O. & Merbel, v. d. New Ultrasensitive detection technologies and techniques for use in microdosing studies. Bioanalysis 1, 357-366 (2009).
  17. Kummar, S. et al. Phase 0 clinical trial of the poly (ADP-ribose) polymerase inhibitor ABT-888 in patients with advanced malignancies. J Clin Oncol 27, 2705-2711, doi:10.1200/jco.2008.19.7681 (2009).
  18. Komoda, F., Suzuki, A., Yanagisawa, K. & Inoue, T. Bibliometric study of radiation application on microdose useful for new drug development. Ann Nucl Med 23, 829-841, doi:10.1007/s12149-009-0311-z (2009).
  19. Kensler, T. W. & Groopman, J. D. Is it time to advance the chemoprevention of environmental carcinogenesis with microdosing trials? Cancer Prev Res (Phila Pa) 2, 1003-1007, doi:1940-6207.CAPR-09-0232 [pii]10.1158/1940-6207.CAPR-09-0232 (2009).
  20. Ings, R. Microdosing: a valuable tool for accelerating drug development and the role of bioanalytical methods in meeting the challenge. Bioanalysis 1, 1293-1305 (2009).
  21. ICH. in International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use 8-16 (ICH Secretariat, Geneve, Switzerland, 2009).
  22. EUMAPP. (2009).
  23. Carpenter, A. P., Jr., Pontecorvo, M. J., Hefti, F. F. & Skovronsky, D. M. The use of the exploratory IND in the evaluation and development of 18F-PET radiopharmaceuticals for amyloid imaging in the brain: a review of one company's experience. The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the So 53, 387-393 (2009).


  1. Zimmer, L. Can positron emission tomography facilitate paediatric drug development? Fundamental & clinical pharmacology 22, 595-598, doi:10.1111/j.1472-8206.2008.00650.x (2008).
  2. Wagner, C. C., Muller, M., Lappin, G. & Langer, O. Positron emission tomography for use in microdosing studies. Curr Opin Drug Discov Devel 11, 104-110 (2008).
  3. Wagner, C. et al. in 14th Symposium of the Austrian Pharmacological Society, November 21-22, Innsbruck, Austria Abstract in: BMC Pharmacology 2008, 8(Suppl 1):A49_oral (2008).
  4. Vuong, L. T. et al. Use of accelerator mass spectrometry to measure the pharmacokinetics and peripheral blood mononuclear cell concentrations of zidovudine. J Pharm Sci 97, 2833-2843 (2008).
  5. Saleem, A., Aboagye, E. O., Matthews, J. C. & Price, P. M. Plasma pharmacokinetic evaluation of cytotoxic agents radiolabelled with positron emitting radioisotopes. Cancer Chemother Pharmacol 61, 865-873 (2008).
  6. Robinson, W. T. Innovative early development regulatory approaches: expIND, expCTA, microdosing. Clin Pharmacol Ther 83, 358-360 (2008).
  7. Rani, P. U. & Naidu, M. U. R. Phase 0 - Microdosing stratergy in clinical trials. Indian J Pharmacol 40, 240-242 (2008).
  8. Ni, J. et al. Microdosing Assessment to Evaluate Pharmacokinetics and Drug Metabolism in Rats Using Liquid Chromatography-Tandem Mass Spectrometry. Pharm Res 25, 1572-1582 (2008).
  9. Murnick, D. E., Dogru, O. & Ilkmen, E. Intracavity optogalvanic spectroscopy. An analytical technique for 14C analysis with subattomole sensitivity. Anal Chem 80, 4820-4824 (2008).
  10. Minaminoto, R. et al. Accelerator Mass Specrometry analysis of background 14C-concentrations in human blood: aiming at reference data for further microdose studies. Ann Nucl Med 22, 883-889 (2008).
  11. MHLW. (ed Labor and Welfare Ministry of Health, Pharmaceutical and Medical Safety Bureau) (Tokyo, Japan, 2008).
  12. Madan, A. et al. A Pharmacokinetic Evaluation of Five H1 Antagonists After an Oral and Intravenous Microdose to Human Subjects. Br J Clin Pharmacol 67, 288-298 (2008).
  13. Lappin, G. & Garner, C. The utility of microdosing over the past 5 years. Expert Opin Drug Metab Toxicol 4, 1499-1506 (2008).
  14. Kummar, S. et al. Phase 0 clinical trials: conceptions and misconceptions. Cancer journal (Sudbury, Mass 14, 133-137, doi:10.1097/PPO.0b013e318172d6f3 (2008).
  15. Graul, A. I. Promoting, improving and accelerating the drug development and approval processes. Drug news & perspectives 21, 36-43 (2008).
  16. Eliopoulos, H. et al. Phase 0 trials: an industry perspective. Clin Cancer Res 14, 3683-3688 (2008).
  17. Coldwell, K. E., Cutts, S. M., Ognibene, T. J., Henderson, P. T. & Phillips, D. R. Detection of Adriamycin-DNA adducts by accelerator mass spectrometry at clinically relevant Adriamycin concentrations. Nucleic acids research 36, e100, doi:10.1093/nar/gkn439 (2008).
  18. Bauer, M., Wagner, C. C. & Langer, O. Microdosing studies in humans: the role of positron emission tomography. Drugs in R&D 9, 73-81 (2008).


  1. Yamane, N. et al. Microdose clinical trial: quantitative determination of fexofenadine in human plasma using liquid chromatography/electrospray ionization tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 858, 118-128 (2007).
  2. Sugiyama, Y. K., C. Microdosing clinical trails. (Jiho, 2007).
  3. Sudo, K. Microdosing for reduction of the time and resources for drug development. Drug metabolism and pharmacokinetics 22, 327 (2007).
  4. Sparreboom, A. Unexplored Pharmacokinetic Opportunities with Microdosing in Oncology. Clin Cancer Res 13, 4033-4034 (2007).
  5. Rowland, M. Commentary on ACCP position statement on the use of microdosing in the drug development process. J Clin Pharmacol 47, 1595-1596; author reply 1597-1598 (2007).
  6. Rasool, S., Abid, S. & Jafri, W. Validity and cost comparison of 14carbon urea breath test for diagnosis of H Pylori in dyspeptic patients. World J Gastroenterol 13, 925-929 (2007).
  7. Mclean, M. A. et al. Accelerating Drug Development: Methodology to Support First-in-Man Pharmacokinetic Studies by the use of Drug Candidate Microdosing. Drug Dev Res 68, 14-22 (2007).
  8. Marchetti, S. & Schellens, J. H. M. The impact of FDA and EMEA guidelines on drug development in relation to phase 0 trials. Br J Cancer 97, 577-581 (2007).
  9. Lundqvist, H., Antoni, G. & Langstrom, B. Genotoxic hazard of radiopharmaceuticals in humans: chemical and radiation aspects coupled to microdosing. Eur J Clin Pharmacol 63, 641-645 (2007).
  10. Liu, X. & Jia, L. The conduct of drug metabolism studies considered good practice (I): analytical systems and in vivo studies. Curr Drug Metab 8, 815-821 (2007).
  11. Lappin, G. et al. in Poster presented at the Interscience Conference on Antimicrobial Agents and Chemotherapy (Chicago, USA, 2007).
  12. Kuwano, K. et al. 2-[4-[(5,6-diphenylpyrazin-2-yl)(isopropyl)amino]butoxy]-N-(methylsulfonyl )acetamide (NS-304), an orally available and long-acting prostacyclin receptor agonist prodrug. J Pharmacol Exp Ther 322, 1181-1188 (2007).
  13. Kinders, R. et al. Phase 0 clinical trials in cancer drug development: from FDA guidance to clinical practice. Molecular interventions 7, 325-334 (2007).
  14. Kimmelman, J. Ethics at phase 0: clarifying the issues. J Law Med Ethics 35, 727-733, 514 (2007).
  15. Hah, S. S., Sumbad, R. A., de Vere White, R. W., Turteltaub, K. W. & Henderson, P. T. Characterization of oxaliplatin-DNA adduct formation in DNA and differentiation of cancer cell drug sensitivity at microdose concentrations. Chem Res Toxicol 20, 1745-1751 (2007).
  16. Feinendegen, L. E., Pollycove, M. & Neumann, R. D. Whole-body responses to low-level radiation exposure: new concepts in mammalian radiobiology. Experimental hematology 35, 37-46 (2007).
  17. Cavero, I. Optimizing the preclinical/clinical interface: an Informa Life Sciences conference 12-13 December, 2006, London, UK. Expert opinion on drug safety 6, 217-224 (2007).
  18. Buchan, P. Smarter candidate selection--utilizing microdosing in exploratory clinical studies. Ernst Schering Research Foundation workshop, 7-27 (2007).
  19. Boyd, R. A. & Lalonde, R. L. Nontraditional approaches to first-in-human studies to increase efficiency of drug development: will microdose studies make a significant impact? Clin Pharmacol Ther 81, 24-26 (2007).
  20. Bertino, J. S., Jr., Greenberg, H. E. & Reed, M. D. American college of clinical pharmacology position statement on the use of microdosing in the drug development process. J Clin Pharmacol 47, 418-422 (2007).


  1. Zanni, G. R. & Wick, J. Y. Microdosing: the new pharmacokinetic paradigm? Consult Pharm 21, 756-776 (2006).
  2. Stumpf, W. E. The dose makes the medicine. Drug Discov Today 11, 550-555 (2006).
  3. Rowland, M. in National Centre for the Replacement, Refinement & Reduction of animals in Research (National Centre for the Replacement, Refinement and Reduction of Animals in Research (NC3Rs), Manchester, 2006).
  4. Mager, D. E. Target-mediated drug disposition and dynamics. Biochem Pharmacol 72, 1-10, doi:10.1016/j.bcp.2005.12.041 (2006).
  5. Lee, C. M. & Farde, L. Using positron emission tomography to facilitate CNS drug development. Trends in pharmacological sciences 27, 310-316 (2006).
  6. Lappin, G. et al. Use of microdosing to predict pharmacokinetics at the therapeutic dose: Experience with 5 drugs. Clin Pharmacol Ther 80, 203-215 (2006).
  7. Lappin, G. & Garner, R. C. A review of human phase 0 and microdosing clinical trials following the US food and drug administration exploratory investigational new drug studies guidance. In J Pharm Med 30, 159-165 (2006).
  8. Garner, R. C. & Lappin, G. The phase 0 microdosing concept. Br J Clin Pharmacol 61, 367-370 (2006).
  9. FDA. Guidance for Industry, Investigators, and Reviewers Exploratory IND Studies. (2006).
  10. Bauer, M. et al. A positron emission tomography microdosing study with a potential antiamyloid drug in healthy volunteers and patients with Alzheimer's disease. Clin Pharmacol Ther 80, 216-227 (2006).
  11. Balani, S. K. et al. Evaluation of microdosing to assess pharmacokinetic linearity in rats using liquid chromatography-tandem mass spectrometry. Drug Metab Dispos 34, 384-388 (2006).


  1. Wilding, I. R. & Bell, J. A. Improved early clinical development through human microdosing studies. Drug Discov Today 10, 890-894 (2005).
  2. Sarapa, N., Hsyu, P. H., Lappin, G. & Garner, R. C. The application of accelerator mass spectrometry to absolute bioavailability studies in humans: simultaneous administration of an intravenous microdose of 14C-nelfinavir mesylate solution and oral nelfinavir to healthy volunteers. J Clin Pharmacol 45, 1198-1205 (2005).
  3. Garner, R. C. Less is more: the human microdosing concept. Drug Discov Today 10, 449-451 (2005).
  4. Friend, D. R. New oral delivery systems for treatment of inflammatory bowel disease. Adv Drug Deliv Rev 57, 247-265 (2005).
  5. Detti, L., Williams, D. B., Robins, J. C., Maxwell, R. A. & Thomas, M. A. A comparison of three downregulation approaches for poor responders undergoing in vitro fertilization. Fertility and sterility 84, 1401-1405 (2005).
  6. Brooks, D. J. Positron emission tomography and single-photon emission computed tomography in central nervous system drug development. NeuroRx 2, 226-236 (2005).


  1. Walker, D. K. The use of pharmacokinetic and pharmacodynamic data in the assessment of drug safety in early drug development. Br J Clin Pharmacol 58, 601-608 (2004).
  2. Sandhu, P. et al. Evaluation of microdosing strategies for studies in preclinical drug development: demonstration of linear pharmacokinetics in dogs of a nucleoside analog over a 50-fold dose range. Drug Metab Dispos 32, 1254-1259 (2004).
  3. Lappin, G. & Garner, R. C. Current perspectives of 14C-isotope measurement in biomedical accelerator mass spectrometry. Analytical Biochemistry 378, 356-364 (2004).
  4. Langer, O. & Muller, M. Methods to assess tissue-specific distribution and metabolism of drugs. Curr Drug Metab 5, 463-481 (2004).
  5. Kairemo, K. J. & Tahtinen, M. Radiolabeled compounds in the development of cytotoxic agents. Curr Pharm Des 10, 2923-2934 (2004).
  6. EMEA. in Position paper CPMP/SWP/2599 (2004).
  7. Brunner, M. et al. [18F]Ciprofloxacin, a new positron emission tomography tracer for noninvasive assessment of the tissue distribution and pharmacokinetics of ciprofloxacin in humans. Antimicrob Agents Chemother 48, 3850-3857, doi:10.1128/aac.48.10.3850-3857.2004 (2004).


  1. Lappin, G. & Garner, R. C. Big physics, small doses: the use of AMS and PET in human microdosing of development drugs. Nat Rev Drug Discov 2, 233-240 (2003).
  2. Koh, H. L., Yau, W. P., Ong, P. S. & Hegde, A. Current trends in modern pharmaceutical analysis for drug discovery. Drug Discov Today 8, 889-897 (2003).
  3. Gonzalez, P. et al. Could the [14C]urea breath test be proposed as a 'gold standard' for detection of Helicobacter pylori infection ? Med Sci Monit 9, CR363-368 (2003).
  4. Combes, R. D. et al. Early microdose drug studies in human volunteers can minimise animal testing: Proceedings of a workshop organised by Volunteers in Research and Testing. Eur J Pharm Sci 19, 1-11 (2003).
  5. Bergstrom, M., Grahnen, A. & Langstrom, B. Positron emission tomography microdosing: a new concept with application in tracer and early clinical drug development. Eur J Clin Pharmacol 59, 357-366 (2003).


  1. Saleem, A. et al. Pharmacokinetic evaluation of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in patients by positron emission tomography. J Clin Oncol 19, 1421-1429 (2001).
  2. Young, G., Ellis, W., Ayrton, J., Hussey, E. & Adamkiewicz, B. Accelerator mass spectrometry (AMS): recent experience of its use in a clinical study and the potential future of the technique. Xenobiotica 31, 619-632, doi:10.1080/00498250110052724 (2001).
  3. Tokuda, Y. et al. Dose escalation and pharmacokinetic study of a humanized anti-HER2 monoclonal antibody in patients with HER2/neu-overexpressing metastatic breast cancer. Br J Cancer 81, 1419-1425, doi:10.1038/sj.bjc.6690343 (1999).
  4. Peura, D. A. et al. Microdose 14C-urea breath test offers diagnosis of Helicobacter pylori in 10 minutes. The American journal of gastroenterology 91, 233-238 (1996).
  5. Christian, B. T. et al. Evaluation of cerebral pharmacokinetics of the novel antidepressant drug, BMS-181101, by positron emission tomography. J Pharmacol Exp Ther 279, 325-331 (1996).
  6. Bielanski, W. et al. Microdose 14C-urea breath test in detection of Helicobacter pylori. J Physiol Pharmacol 47, 91-100 (1996).
  7. Thijssen, H. H. & Baars, L. G. Hepatic uptake and storage of warfarin. The relation with the target enzyme vitamin K 2,3-epoxide reductase. J Pharmacol Exp Ther 243, 1082-1088 (1987).